2,317 research outputs found

    Integrability and maximally helicity violating diagrams in n=4 supersymmetric yang-mills theory.

    Get PDF
    We apply maximally helicity violating (MHV) diagrams to the derivation of the one-loop dilatation operator of N=4 supersymmetric Yang-Mills theory in the SO(6) sector. We find that in this approach the calculation reduces to the evaluation of a single MHV diagram in dimensional regularization. This provides the first application of MHV diagrams to an off-shell quantity. We also discuss other applications of the method and future directions

    Multi - instantons, supersymmetry and topological field theories

    Get PDF
    In this letter we argue that instanton-dominated Green's functions in N=2 Super Yang-Mills theories can be equivalently computed either using the so-called constrained instanton method or making reference to the topological twisted version of the theory. Defining an appropriate BRST operator (as a supersymmetry plus a gauge variation), we also show that the expansion coefficients of the Seiberg-Witten effective action for the low-energy degrees of freedom can be written as integrals of total derivatives over the moduli space of self-dual gauge connections

    Foreign Licensing and Joint Venture Agreements

    Get PDF

    Industrial Property Rights - Licensing and Joint Ventures Abroad

    Get PDF

    Expanding World Trade: Facts and Problems

    Get PDF

    KERNEL FEATURE CROSS-CORRELATION FOR UNSUPERVISED QUANTIFICATION OF DAMAGE FROM WINDTHROW IN FORESTS

    Get PDF
    In this study estimation of tree damage from a windthrow event using feature detection on RGB high resolution imagery is assessed. An accurate quantitative assessment of the damage in terms of volume is important and can be done by ground sampling, which is notably expensive and time-consuming, or by manual interpretation and analyses of aerial images. This latter manual method also requires an expert operator investing time to manually detect damaged trees and apply relation functions between measures and volume which are also error-prone. In the proposed method RGB images with 0.2 m ground sample distance are analysed using an adaptive template matching method. Ten images corresponding to ten separate study areas are tested. A 13 7 13 pixels kernel with a simplified lin ear-feature representation of a cylinder is applied at different rotation angles (from 0\ub0 to 170\ub0 at 10\ub0 steps). The higher values of the normalized cross-correlation (NCC) of all angles are recorded for each pixel for each image. Several features are tested: percentiles (75, 80, 85, 90, 95, 99, max) and sum and number of pixels with NCC above 0.55. Three regression methods are tested, multiple regression (mr), support vector machines (SVM) with linear kernel and random forests. The first two methods gave the best results. The ground-truth was acquired by ground sampling, and total volumes of damaged trees are estimated for each of the 10 areas. Damaged volumes in the ten areas range from 3c1.8 7 102 m3 to 3c1.2 7 104 m3. Regression results show that smv regression method over the sum gives an R-squared of 0.92, a mean of absolute errors (MAE) of 255 m3 and a relative absolute error (RAE) of 34% using leave-one-out cross validation from the 10 observations. These initial results are encouraging and support further investigations on more finely tuned kernel template metrics to define an unsupervised image analysis process to automatically assess forest damage from windthrow

    Integrability and unitarity

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.This work was supported by the Science and Technology Facilities Council Consolidated Grant ST/L000415/1 “String theory, gauge theory & duality”

    Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ

    Get PDF
    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment
    corecore